A singly reinforced beam 230 mm Γ 480 mm, effective to the centre of 4-20 mm diameter Fe415 bars is cast using M20 concrete. Find the ultimate moment of resistance the beam can offer.
To find the ultimate moment of resistance of the singly reinforced beam, we need to perform the following steps:
Given Data:
- Beam dimensions: Width π=230 mm, Depth π·=480 mm
- Effective depth π=effective depth to the center of reinforcement
- Number and diameter of reinforcement bars: 4 bars of 20 mm diameter
- Concrete grade: M20
- Steel grade: Fe415
Steps to Calculate the Ultimate Moment of Resistance:
-
Calculate the Effective Depth (d):
- Assume the cover is 25 mm.
- Effective depth π=π·βcoverβdiameter of bars2
- π=480 mmβ25 mmβ20 mm2
- π=480 mmβ25 mmβ10 mm
- π=445 mm
-
Calculate the Area of Steel Reinforcement (Ast):
- Area of one bar π΄π π‘=ππ24
- For 20 mm diameter bars: π΄π π‘=πΓ(20)24
- π΄π π‘=3.14Γ4004
- π΄π π‘=314 mm2
- Total area for 4 bars: π΄π π‘(π‘ππ‘ππ)=4Γ314
- π΄π π‘(π‘ππ‘ππ)=1256 mm2
-
Determine the Design Strengths:
- For M20 concrete, πππ=20 MPa and ππ¦=415 MPa for Fe415 steel.
- Design strength of concrete πππ,πππ πππ=πππ1.5
- πππ,πππ πππ=201.5β13.33 MPa
- Design strength of steel ππ¦,πππ πππ=ππ¦1.15
- ππ¦,πππ πππ=4151.15β361 MPa
-
Calculate the Moment of Resistance:
-
For singly reinforced sections, the ultimate moment of resistance ππ’ is given by:
ππ’=0.87β ππ¦β π΄π π‘β (πβπ2)
where π=π΄π π‘β ππ¦0.36β πππβ π
-
First, calculate π:
π=1256β 3610.36β 13.33β 230π=45381611498.8β39.5 mm
-
Then, calculate ππ’:
ππ’=0.87β 361β 1256β (445β39.52)ππ’=0.87β 361β 1256β (445β19.75)ππ’=0.87β 361β 1256β 425.25ππ’β0.87β 361β 1256β 425.25ππ’β62.26Γ425.25β26,536 kN-mmππ’β26.54 kNm
-
Ultimate Moment of Resistance
The ultimate moment of resistance of the beam is approximately 26.54 kNm.
ο»Ώο»Ώ
