RCC Numerical – calculate moment of resistance of the section.

A singly reinforced concrete beam 200 mm width and having effective depth 350 mm is reinforced with 3 bars of 12 mm diameter. Using M15 concrete of Fe415 steel, calculate moment of resistance of the section.

To calculate the moment of resistance of a singly reinforced concrete beam, we use the following steps:

Given Data:

  • Width of the beam (b) = 200 mm
  • Effective depth (d) = 350 mm
  • Reinforcement = 3 bars of 12 mm diameter
  • Concrete grade = M15 (i.e., π‘“π‘π‘˜=15 N/mmΒ²)
  • Steel grade = Fe415 (i.e., 𝑓𝑦=415 N/mmΒ²)

Step 1: Calculate the Area of Steel (A𝑠𝑑)

For 3 bars of 12 mm diameter:

𝐴𝑠𝑑=3Γ—πœ‹4Γ—(12)2=3Γ—πœ‹4Γ—144=3Γ—113.097=339.292 mm2

Step 2: Calculate the Neutral Axis (x𝑒)

Using the formula for the neutral axis for singly reinforced sections:

π‘₯𝑒=0.87𝑓𝑦𝐴𝑠𝑑0.36π‘“π‘π‘˜π‘

Substitute the values:

π‘₯𝑒=0.87Γ—415Γ—339.2920.36Γ—15Γ—200π‘₯𝑒=122,804.0161080=113.705 mm

Step 3: Calculate Limiting Depth of Neutral Axis (xπ‘’π‘šπ‘Žπ‘₯)

For Fe415 steel, the limiting depth of the neutral axis is:

π‘₯π‘’π‘šπ‘Žπ‘₯=0.48×𝑑=0.48Γ—350=168 mm

Since π‘₯𝑒<π‘₯π‘’π‘šπ‘Žπ‘₯, the section is under-reinforced.

Step 4: Calculate Moment of Resistance (M𝑅)

The moment of resistance is given by:

𝑀𝑅=0.87𝑓𝑦𝐴𝑠𝑑(π‘‘βˆ’0.42π‘₯𝑒1000)

Substitute the values:

𝑀𝑅=0.87Γ—415Γ—339.292Γ—(350βˆ’0.42Γ—113.705)/1000𝑀𝑅=122,804.016Γ—(350βˆ’47.757)/1000𝑀𝑅=122,804.016Γ—302.243/1000𝑀𝑅=37,100,384.54/1000=37.1 kNm

Final Answer:

The moment of resistance of the section is 37.1 kNm.

ο»Ώο»Ώ

Leave a Reply

Your email address will not be published. Required fields are marked *