RCC Numerical - Simply Supported Beam Calculate depth and area of steel

Hi everyone in this post i am providing the detailed RCC numerical solution in step by step. Please follow the steps to get the proper solutions.

Simply Supported Beam Calculate depth and area of steel


Numerical:

Calculate depth and area of steel at mid span of a simply supported beam over as clear span 6 m. The beam is carrying all inclusive load 20 KN/m. Assume 300 mm bearings. Use M20 and Fe500

Solution:



Given:

  • Length of beam (l): 6 m
  • Effective length (Le): 6 + 0.3/2 + 0.3/2 = 6.3 m
  • Load (w): 20 kN/m
  • Characteristic compressive strength of concrete (fck): 20 N/mm²
  • Yield strength of steel (fy): 500 N/mm²

Solution:

  • Moment Calculation:

M=wLe28M = \frac{w \cdot L_e^2}{8}
=206.328= \frac{20 \cdot 6.3^2}{8}
=99.225 KNm= 99.225 \text{ KNm}

  • Factored Moment:

Md=γfM
M_d = \gamma_f \cdot M
=1.599.225
= 1.5 \cdot 99.225
=148.8375 KNm= 148.8375 \text{ KNm}

  • Maximum Moment Capacity:

Mu lim=0.133fckbd2M_u \text{ lim} = 0.133 \cdot f_{ck} \cdot b \cdot d^2
  • Assume beam width (b):

b=d/2

Equating Mu lim to Md:

0.133fckbd2=148.83×106
0.133 \cdot f_{ck} \cdot b \cdot d^2 = 148.83 \times 10^6
0.13320(d/2)d2=148.83×106
0.133 \cdot 20 \cdot (d/2) \cdot d^2 = 148.83 \times 10^6
d31.33=148.83×106
d^3 \cdot 1.33 = 148.83 \times 10^6
d3=111908270.7
d^3 = 111908270.7
d=481.89 mmd = 481.89 \text{ mm}

Say, d=490 mmd = 490 \text{ mm}

Assume effective cover (dd') = 40 mm:

D=d+d=490+40=530 mmD = d + d' = 490 + 40 = 530 \text{ mm}

Therefore:

b=490/2=245 mmb = 490 / 2 = 245 \text{ mm}

  • Percentage of tensile reinforcement:

Pt lim=Astbd100
P_{t \text{ lim}} = \frac{\text{Ast}}{b \cdot d} \cdot 100
=0.038fck
= 0.038 \cdot f_{ck}
=0.03820
= 0.038 \cdot 20
=0.76%
= 0.76 \%
Ast=0.76bd100
\text{Ast} = \frac{0.76 \cdot b \cdot d}{100}
=0.76245490100
= \frac{0.76 \cdot 245 \cdot 490}{100}
=912.38 mm2= 912.38 \text{ mm}^2

Therefore:

Ast=912.38 mm2<Astmin=0.85bdfy=0.85245490500=204.085 mm2Ok\text{Ast} = 912.38 \text{ mm}^2 < \text{Ast}_{\text{min}} = \frac{0.85 \cdot b \cdot d}{f_y} = \frac{0.85 \cdot 245 \cdot 490}{500} = 204.085 \text{ mm}^2 \rightarrow \text{Ok}

Assuming 20 mm Ø bars to be used:

No. of bars:

=912.38(Ï€4202)=2.90Say 3 Nos= \frac{912.38}{\left(\frac{\pi}{4} \cdot 20^2\right)} = 2.90 \rightarrow \text{Say 3 Nos}

Provide 3 bars of 20 mm Ø with area = 942.48 mm²


Post a Comment

0 Comments