RCC numerical: Design of Two Way Slab

Hi everyone in this post i am providing you a detailed solution for a numerical of "Design of Two Way Slab" step by step. 


Numerical:

Design a simply supported two way slab over a room 4.8 m x 4.0 m effective, subjected to UDL 5 kN/m2 (inclusive of self wt.) Use M20 and Fe 415. Draw reinforcement detail check for shear may not be given. Take αx = 0.084 and αy = 0.059

Solution:

Given:

Effective dimensions of the two-way slab: 4.8m×4m4.8 \, \text{m} \times 4 \, \text{m}

Load w=5kN/m2w = 5 \, \text{kN/m}^2 (inclusive of self-weight)

Characteristic compressive strength of concrete fck=20N/mm2f_{ck} = 20 \, \text{N/mm}^2

Yield strength of steel fy=415N/mm2f_y = 415 \, \text{N/mm}^2

Coefficient αx=0.084\alpha_x = 0.084

Coefficient αy=0.059\alpha_y = 0.059

Design Constants:

For Fe 415, Mulim=0.138fckbd2



Estimation of Slab Thickness:

Assume MF = 1.4

Therefore,

d=span20×1.4d = \frac{\text{span}}{20 \times 1.4}
d=400020×1.4d = \frac{4000}{20 \times 1.4}
d=142.86mmsay150mmd = 142.86 \, \text{mm} \, \text{say} \, 150 \, \text{mm}

Assuming 10 mm Ø main bars, & c = 20 mm,

D=d+c+(Ø2)D = d + c + \left(\frac{\text{Ø}}{2}\right)
D=150+20+(102)D = 150 + 20 + \left(\frac{10}{2}\right)
D=175mmD = 175 \, \text{mm}

Effective Span:

Lxe=4000mmL_{xe} = 4000 \, \text{mm}
Lye=4800mmL_{ye} = 4800 \, \text{mm}

Consider 1 m wide strip

Load: wgiven=5KN/m2w_{\text{given}} = 5 \, \text{KN/m}^2

w=1×1×5=5KN/m2w = 1 \times 1 \times 5 = 5 \, \text{KN/m}^2

Factored load:

wd=1.5×5=7.5KN/m
w_d = 1.5 \times 5 = 7.5 \, \text{KN/m}

Factored Bending Moment:

αx=0.084\alpha_x = 0.084
αy=0.059\alpha_y = 0.059
Mxd=αxwdLxe2M_{xd} = \alpha_x \cdot w_d \cdot L_{xe}^2
Mxd=0.084×7.5×42M_{xd} = 0.084 \times 7.5 \times 4^2
Mxd=10.08KNmM_{xd} = 10.08 \, \text{KNm}
Myd=αywdLxe2M_{yd} = \alpha_y \cdot w_d \cdot L_{xe}^2
Myd=0.059×7.5×42M_{yd} = 0.059 \times 7.5 \times 4^2
Myd=7.08KNm
M_{yd} = 7.08 \, \text{KNm}

Effective Depth of Slab:

0.138fckbd2=Mxd0.138 \, f_{ck} \, b \, d^2 = M_{xd}
0.138×20×1000d2=10.08×1060.138 \times 20 \times 1000 \, d^2 = 10.08 \times 10^6
dreqd=60.43mm<(davailable=150mm)Hence OKd_{\text{reqd}} = 60.43 \, \text{mm} < (d_{\text{available}} = 150 \, \text{mm}) \, \text{Hence OK}

Area and Spacing of Steel:

Astx=0.5fckfy[11(4.6Mxdfckbd2)]bdA_{stx} = 0.5 \frac{f_{ck}}{f_y} \left[ 1 - \sqrt{1 - \left( \frac{4.6 \, M_{xd}}{f_{ck} \cdot b \cdot d^2} \right)} \right] \cdot b \cdot d
Astx=0.5×20415[11(4.6×10.08×10620×1000×150×150)]×1000×150A_{stx} = \frac{0.5 \times 20}{415} \left[ 1 - \sqrt{1 - \left( \frac{4.6 \times 10.08 \times 10^6}{20 \times 1000 \times 150 \times 150} \right)} \right] \times 1000 \times 150
Astx=191.278mm2


Area and Spacing of Distribution Steel:

Select 8 mm Ø bars, Spacing = min of a, b, c

a) Calculation of spacing SxS_x:

Sx=(Ï€/4×82×1000191.27)S_x = \left(\frac{\pi/4 \times 8^2 \times 1000}{191.27}\right)
Sx=262.76mm(say 260 mm)S_x = 262.76 \, \text{mm} \, \text{(say 260 mm)}
Sx=260mm c/cS_x = 260 \, \text{mm c/c}

b) Maximum spacing based on depth:

3d=3×150=450mm3d = 3 \times 150 = 450 \, \text{mm}

c) Given maximum spacing:

300mm300 \, \text{mm}

Therefore, spacing Sx=260mm c/cS_x = 260 \, \text{mm c/c}.

d=d=1508=142mmd' = d - \varnothing = 150 - 8 = 142 \, \text{mm}
Asty=0.5×fckfy[11(4.6×Mydfck×b×d2)]×b×dA_{st_y} = \frac{0.5 \times f_{ck}}{f_y} \left[ 1 - \sqrt{1 - \left( \frac{4.6 \times M_{yd}}{f_{ck} \times b \times d^2} \right)} \right] \times b \times d'
Asty=0.5×20415[11(4.6×7.08×10520×1000×142×142)]×1000×142A_{st_y} = \frac{0.5 \times 20}{415} \left[ 1 - \sqrt{1 - \left( \frac{4.6 \times 7.08 \times 10^5}{20 \times 1000 \times 142 \times 142} \right)} \right] \times 1000 \times 142
=141.07mm2= 141.07 \, \text{mm}^2
Astmin=(0.12100)×b×DA_{st_{\text{min}}} = \left(\frac{0.12}{100}\right) \times b \times D
=(0.12100)×1000×175= \left(\frac{0.12}{100}\right) \times 1000 \times 175
=210mm2= 210 \, \text{mm}^2

Since AstyA_{st_y} calculated is very low, take AstxA_{st_x} and AstyA_{st_y} as 210 mm2^2.

Therefore, spacing of 8 mm diameter bars:

Sx=Sy=(Ï€4×82×1000Astmin)S_x = S_y = \left( \frac{\pi}{4} \times \frac{8^2 \times 1000}{A_{st_{\text{min}}}} \right)
Sx=Sy=(50.26×1000210)S_x = S_y = \left( \frac{50.26 \times 1000}{210} \right)
=239.33mm (say 230 mm c/c, which is less than 3d or 300 mm)= 239.33 \, \text{mm (say 230 mm c/c, which is less than 3d or 300 mm)}

Provide 8 mm Ø bars at 230 mm c/c in both directions.

Reinforcement Details:










Post a Comment

0 Comments