RCC Numerical: Design of RCC Column

Lets understand the detailed solution of Design of RCC Column step by step in easy way. This post will provide you a comprehensive solution for the design of RCC Column from start to end.

Design of RCC column

Numerical:

Design a R.C column to carry an axial working load 400 kN.The effective length of column is 2.5 m. check the column for min eccentricity. Use M20 and Fe 415 grades of concrete and steel. 

Solution:

Given Data:

P=400kNP = 400 \, \text{kN}
Leff=2.5m=2500mmL_{\text{eff}} = 2.5 \, \text{m} = 2500 \, \text{mm}
fck=20N/mm2f_{ck} = 20 \, \text{N/mm}^2
fy=415N/mm2f_y = 415 \, \text{N/mm}^2

Step 1: To Find Factored Load

Pu=1.5×PP_u = 1.5 \times P
Pu=1.5×400P_u = 1.5 \times 400
Pu=600kNP_u = 600 \, \text{kN}

Step 2: Assume 1% of Steel in Column

Area of steel AscA_{sc}:

Asc=0.01×AgA_{sc} = 0.01 \times A_g

Area of concrete AcA_c:

Ac=AgAscA_c = A_g - A_{sc}
Ac=0.99×Ag




A_c = 0.99 \times A_g

Step 3: To Find Gross Area
A_g

Factored load formula:

Pu=(0.4×fck×Ac)+(0.67×fy×Asc)P_u = (0.4 \times f_{ck} \times A_c) + (0.67 \times f_y \times A_{sc})

Substitute values:

600×103=(0.4×20×0.99×Ag)+(0.67×415×0.01×Ag)600 \times 10^3 = (0.4 \times 20 \times 0.99 \times A_g) + (0.67 \times 415 \times 0.01 \times A_g)

Solve for AgA_g:

600×103=7.92×Ag+2.78×Ag600 \times 10^3 = 7.92 \times A_g + 2.78 \times A_g
600×103=10.70×Ag600 \times 10^3 = 10.70 \times A_g
Ag=600×10310.70A_g = \frac{600 \times 10^3}{10.70}
Ag=56074.77mm2A_g = 56074.77 \, \text{mm}^2
Ag=56.07×103mm2A_g = 56.07 \times 10^3 \, \text{mm}^2

Assuming a square column:

Side=56.07×103\text{Side} = \sqrt{56.07 \times 10^3}
Side236.79mm\text{Side} \approx 236.79 \, \text{mm}


Step 4: Check for Minimum Eccentricity

emin=L500+D30 OR 20mm whichever is greatere_{\text{min}} = \frac{L}{500} + \frac{D}{30} \text{ OR } 20 \text{mm whichever is greater}

Given:

  • L=2500mmL = 2500 \, \text{mm}

  • D=240mmD = 240 \, \text{mm}

emin=2500500+24030e_{\text{min}} = \frac{2500}{500} + \frac{240}{30}
emin=5+8e_{\text{min}} = 5 + 8
emin=13mm OR 20mm whichever is greatere_{\text{min}} = 13 \text{mm OR } 20 \text{mm whichever is greater}
emin=20mme_{\text{min}} = 20 \text{mm}

But, emine_{\text{min}} is more than 0.05D.

0.05D=0.05×240=12mm0.05D = 0.05 \times 240 = 12 \, \text{mm}

So, check for minimum eccentricity is not satisfied.

Increase the Dimension

New dimensions: 320mm×320mm320 \, \text{mm} \times 320 \, \text{mm}

emin=2500500+32030e_{\text{min}} = \frac{2500}{500} + \frac{320}{30}
emin=5+10.67e_{\text{min}} = 5 + 10.67
emin=15.67mme_{\text{min}} = 15.67 \text{mm}
0.05D=0.05×320=16mm0.05D = 0.05 \times 320 = 16 \text{mm}
emin<0.05De_{\text{min}} < 0.05D
15.67mm<16mm15.67 \text{mm} < 16 \text{mm}

Check for minimum eccentricity is satisfied.

Revised Size of Column

Revised size of column: 320mm×320mm320 \, \text{mm} \times 320 \, \text{mm}

Step 5: Calculate Area of Steel

Asc=0.01AgA_{\text{sc}} = 0.01 A_{\text{g}}
Ag=320×320A_{\text{g}} = 320 \times 320
Asc=0.01×320×320A_{\text{sc}} = 0.01 \times 320 \times 320
Asc=1024mm2A_{\text{sc}} = 1024 \, \text{mm}^2

Provide 4 bars of 20 mm Ø bar.

Step 6: Lateral Ties

Diameter of ties:

Diameter of ties=14×Diameter of longitudinal steel bar\text{Diameter of ties} = \frac{1}{4} \times \text{Diameter of longitudinal steel bar}
=14×20= \frac{1}{4} \times 20
=5mm= 5 \, \text{mm}

Since the calculated diameter is less than 6 mm, provide 6 mm diameter lateral ties.

Spacing of Lateral Ties

Spacing should not be greater than:

  1. Least lateral dimension of column =320mm= 320 \, \text{mm}

  2. 16 times the diameter of longitudinal steel =16×20=320mm= 16 \times 20 = 320 \, \text{mm}

  3. 300 mm

Provide lateral ties of 6 mm Ø at 300 mm center-to-center.






Post a Comment

0 Comments