RCC Numerical: Design of One way Slab

Hi everyone in this post i am providing you all a step by step detailed explanation of below RCC numerical of "one way slab". Read carefully below numerical and solution.

RCC Numerical: Design of One way Slab



Numerical:

A one way slab is to be designed for an effective span 3.3 m . The super imposed load including finishing is 4 KN/m2 .Taking modification factor 1.2.Design the slab. Sketch c/s of slab showing reinforcement details. Use concrete M20 and steel Fe 415 .

Solution:



Given:

  • Span (l): 3.3 m
  • Live Load (L.L.) and Floor Finish (F.F.): 4 KN/m²
  • Modification Factor (M.F.): 1.2


1. Design Constants:
  • Yield strength of steel (fy): 415 N/mm²
  • Characteristic compressive strength of concrete (fck): 20 N/mm²
  • Maximum depth of neutral axis (Xu max): 0.48d
  • Ultimate moment of resistance (Mu lim): 0.138 fck b d²
2. Estimation of Slab Thickness:

d=span20×M.F.d = \frac{\text{span}}{20 \times \text{M.F.}}
d=330020×1.2d = \frac{3300}{20 \times 1.2}
d=137.5 mmd = 137.5 \text{ mm}

Assuming 10 mm Ø main bars and nominal cover as 20 mm:

D=d+dc+Ï•2D = d + d_c + \frac{\phi}{2}
D=137.5+20+102D = 137.5 + 20 + \frac{10}{2}
D=162.5 mmD = 162.5 \text{ mm}

Say D=165 mmD = 165 \text{ mm}

Therefore:

davail=Ddcϕ2d_{avail} = D - d_c - \frac{\phi}{2}
davail=16520102d_{avail} = 165 - 20 - \frac{10}{2}
davail=140 mmd_{avail} = 140 \text{ mm}

3. Effective Span:

Le=3.3 m (given)


L_e = 3.3 \text{ m (given)}

4. Load Calculations (considering 1 m wide strip):

Self weight of slab=1×1×0.165×25=4.125 KN/m\text{Self weight of slab} = 1 \times 1 \times 0.165 \times 25 = 4.125 \text{ KN/m}
Weight of F.F & L.L.=1×1×4=4 KN/m\text{Weight of F.F \& L.L.} = 1 \times 1 \times 4 = 4 \text{ KN/m}
Total load (w)=8.125 KN/m\text{Total load (w)} = 8.125 \text{ KN/m}

Factored load:

wd=1.5×8.125w_d = 1.5 \times 8.125
wd=12.1875 KN/m

w_d = 12.1875 \text{ KN/m}

5. Factored (Design) Maximum Bending Moment:

Md=(wd×Le28)M_d = \left(\frac{w_d \times L_e^2}{8}\right)
Md=(12.1875×3.328)M_d = \left(\frac{12.1875 \times 3.3^2}{8}\right)
Md=16.59 KNmM_d = 16.59 \text{ KNm}

6. Required Overall Depth and Effective Depth:

Equating MulimM_u \text{lim} to MdM_d:

0.138fckbd2=Md0.138 f_{ck} b d^2 = M_d
0.138×20×1000×d2=16.59×1060.138 \times 20 \times 1000 \times d^2 = 16.59 \times 10^6
d=77.53 mmd = 77.53 \text{ mm}

davail=140 mm>drequiredd_{avail} = 140 \text{ mm} > d_{required}:

Hence, OK.\text{Hence, OK.}

Provide D=165 mmD = 165 \text{ mm} and davail=140 mmd_{avail} = 140 \text{ mm}

7. Area of Main Steel:
Ast=0.5fckfy[114.6Mdfckbd2]bdA_{st} = \frac{0.5 f_{ck}}{f_y} \left[ 1 - \sqrt{1 - \frac{4.6 M_d}{f_{ck} b d^2}} \right] b d
Ast=0.5×20415[114.6×16.59×10620×1000×1402]×1000×140A_{st} = \frac{0.5 \times 20}{415} \left[ 1 - \sqrt{1 - \frac{4.6 \times 16.59 \times 10^6}{20 \times 1000 \times 140^2}} \right] \times 1000 \times 140
Ast=346.13 mm2

Spacing of Main Reinforcement

a) Calculating Spacing (S10S_{10})

S10=1000×(Ï€4×102)346.13S_{10} = \frac{1000 \times \left(\frac{\pi}{4} \times 10^2\right)}{346.13}
S10=1000×78.54346.13S_{10} = \frac{1000 \times 78.54}{346.13}
S10=226.91mmS_{10} = 226.91 \, \text{mm}

Spacing = 225 mm c/c (rounded to nearest standard size)

b) 3d Calculation

3d=3×140=420mm3d = 3 \times 140 = 420 \, \text{mm}

c) Minimum Spacing

Minimum Spacing=300mm\text{Minimum Spacing} = 300 \, \text{mm}

Ast provided

Ast provided=1000×(Ï€4×102)225\text{Ast provided} = \frac{1000 \times \left(\frac{\pi}{4} \times 10^2\right)}{225}
Ast provided=1000×78.54225\text{Ast provided} = \frac{1000 \times 78.54}{225}
Ast provided=349.06mm2

8. Area and Spacing of Distribution Steel:

Step 1: Calculate the Minimum Area of Distribution Steel (Astmin)

Astmin=0.15%×b×D\text{Ast}_{\text{min}} = 0.15 \% \times b \times D
=0.15100×1000mm×165mm= \frac{0.15}{100} \times 1000 \, \text{mm} \times 165 \, \text{mm}
=247.5mm2= 247.5 \, \text{mm}^2

Step 2: Determine the Spacing of 6 mm Diameter Mild Steel Distribution Bars

Sd=(Area of one barAstmin)×1000S_d = \left( \frac{\text{Area of one bar}}{\text{Ast}_{\text{min}}} \right) \times 1000
Area of one bar=Ï€×(62)2\text{Area of one bar} = \pi \times \left(\frac{6}{2}\right)^2
=Ï€×32= \pi \times 3^2
=28.27mm2= 28.27 \, \text{mm}^2

Calculate Spacing (S)

Sd=(28.27mm2247.5mm2)×1000mmS_d = \left( \frac{28.27 \, \text{mm}^2}{247.5 \, \text{mm}^2} \right) \times 1000 \, \text{mm}
=114.22mm= 114.22 \, \text{mm}
110mm\approx 110 \, \text{mm}

Step 3: Check Maximum Allowable Spacing

Smax=5×DepthS_{\text{max}} = 5 \times \text{Depth}
=5×140mm= 5 \times 140 \, \text{mm}
=700mm= 700 \, \text{mm}

Given Maximum Spacing

=450mm= 450 \, \text{mm}

Therefore, the minimum spacing calculated is 114.22 mm, approximated to 110 mm.

Conclusion:

Provide 6 mm diameter distribution bars at 110 mm center-to-center.

9. Reinforcement Details:





Post a Comment

0 Comments