RCC numerical: Design of Doubly Reinforced Beam

Hi all, lets understand the step by step calculation to design the Doubly Reinforced Beam. This post will provide you a step by step design calculation from start till end to understand the procedure.

Design of Doubly Reinforced Beam



Numerical:

A doubly reinforced beam 300 mm x 500 mm effective is reinforced with 1035 mm2 at 25 mm below top edge and 1840 mm2 above bottom edge. Take M 20 concrete and Steel Fe 415. Find moment of resistance (Mu). Use fsc= 355 N/mm2 and neglect σcc.

Solution:

Given Data:

Breadth (bb) = 300 mm

Effective depth (dd) = 500 mm

Cover depth (dd') = 25 mm

Area of compression steel (AscA_{\text{sc}}) = 1035 mm²

Area of tension steel (AstA_{\text{st}}) = 1840 mm²

Characteristic compressive strength of concrete (fckf_{\text{ck}}) = 20 N/mm²

Yield strength of steel (fyf_{\text{y}}) = 415 N/mm²

Step 1: To find Xu,maxX_{u, \text{max}}

For Fe415 steel:

Xu,max=0.479dX_{u, \text{max}} = 0.479 \, d
Xu,max=0.479×500X_{u, \text{max}} = 0.479 \times 500
Xu,max=239.5mmX_{u, \text{max}} = 239.5 \, \text{mm}

Step 2: To find actual XuX_u

For compression steel:

fcc=σcc=0f_{\text{cc}} = \sigma_{\text{cc}} = 0

Area of tension steel in compression (Ast2A_{\text{st2}}):

Ast2=(fscfcc)×Asc0.87fyA_{\text{st2}} = \frac{(f_{\text{sc}} - f_{\text{cc}}) \times A_{\text{sc}}}{0.87 \, f_{\text{y}}}
Ast2=(3550)×10350.87×415A_{\text{st2}} = \frac{(355 - 0) \times 1035}{0.87 \times 415}
Ast2=1035×3550.87×415A_{\text{st2}} = \frac{1035 \times 355}{0.87 \times 415}
Ast2=1017.656mm2A_{\text{st2}} = 1017.656 \, \text{mm}²

Area of tension steel in tension (Ast1A_{\text{st1}}):

Ast1=AstAst2A_{\text{st1}} = A_{\text{st}} - A_{\text{st2}}
Ast1=18401017.656A_{\text{st1}} = 1840 - 1017.656
Ast1=822.344mm2A_{\text{st1}} = 822.344 \, \text{mm}²

Neutral axis depth (XuX_u):

Xu=0.87fyAst10.36fckbX_u = \frac{0.87 \, f_{\text{y}} \, A_{\text{st1}}}{0.36 \, f_{\text{ck}} \, b}
Xu=0.87×415×822.3440.36×20×300X_u = \frac{0.87 \times 415 \times 822.344}{0.36 \times 20 \times 300}
Xu=137.457mmX_u = 137.457 \, \text{mm}

Since Xu<Xu,maxX_u < X_{u, \text{max}}, the section is under-reinforced.

Step 3: To find Moment of Resistance 

Mu=0.87fyAst1(d0.42Xu)+(fscfcc)Asc(dd)M_u = 0.87 \, f_{\text{y}} \, A_{\text{st1}} (d - 0.42 \, X_u) + (f_{\text{sc}} - f_{\text{cc}}) \, A_{\text{sc}} (d - d')
Mu=0.87×415×822.344(5000.42×137.457)+(3550)×1035(50025)M_u = 0.87 \times 415 \times 822.344 (500 - 0.42 \times 137.457) + (355 - 0) \times 1035 (500 - 25)
Mu=305.83×106NmmM_u = 305.83 \times 10^6 \, \text{Nmm}
Mu=305.83kNm


Post a Comment

0 Comments