RCC Numerical - Ultimate moment of resistance

A singly reinforced rectangular beam is 450 mm (wide) and 560 mm (effective depth) with tensile reinforcement of 4 mild steel bars of 20 mm diameter. The effective cover to tensile reinforcement is 40 mm. Establish whether the section is under-reinforced or over-reinforced and calculate ultimate moment of resistance of beam. Use M20 concrete.

Given Data:

  • Beam width (b): 450 mm
  • Effective depth (d): 560 mm
  • Diameter of tensile reinforcement bars: 20 mm
  • Number of tensile bars (n): 4 bars
  • Effective cover (d’): 40 mm
  • Grade of concrete: M20
  • Yield strength of mild steel (fy): 250 N/mm² (for mild steel)
  • Characteristic strength of concrete (fck): 20 N/mm²

Step 1: Calculate Area of Tensile Reinforcement (Ast)

Area of steel (Ast)=n×Ï€4×dbar2\text{Area of steel (Ast)} = n \times \frac{\pi}{4} \times d_{bar}^2 Ast=4×Ï€4×(20)2\text{Ast} = 4 \times \frac{\pi}{4} \times (20)^2 Ast=4×314.16=1256.64mm2\text{Ast} = 4 \times 314.16 = 1256.64 \, \text{mm}^2

Step 2: Calculate Limiting Area of Steel (Ast,lim)

The limiting area of steel (Ast,lim) is calculated using the following formula: Ast,lim=0.36×fck×b×xu,lim/fy\text{Ast,lim} = 0.36 \times fck \times b \times x_{u,\lim} / f_y Where:

  • fckfck = 20 N/mm²
  • fyfy = 250 N/mm² (for mild steel)
  • bb = 450 mm
  • xu,limx_{u,\lim} is the limiting depth of the neutral axis for under-reinforced sections.

For Fe-250 (mild steel), the limiting neutral axis depth factor for M20 concrete is 0.53d: xu,lim=0.53×560=296.8mmx_{u,\lim} = 0.53 \times 560 = 296.8 \, \text{mm}

Now, calculate the limiting steel area: Ast,lim=0.36×20×450×296.8250\text{Ast,lim} = \frac{0.36 \times 20 \times 450 \times 296.8}{250} Ast,lim=3830.8mm2\text{Ast,lim} = 3830.8 \, \text{mm}^2

Step 3: Check Whether the Section is Under-Reinforced or Over-Reinforced

If Ast<Ast,limAst < Ast,lim, the section is under-reinforced. Otherwise, it is over-reinforced.

In this case:

  • Ast=1256.64mm2Ast = 1256.64 \, \text{mm}^2
  • Ast,lim=3830.8mm2Ast,lim = 3830.8 \, \text{mm}^2

Since Ast<Ast,limAst < Ast,lim, the section is under-reinforced.

Step 4: Calculate Ultimate Moment of Resistance (Mu)

For under-reinforced sections, the moment of resistance (Mu) can be calculated as: Mu=0.87×fy×Ast×(d0.42×xu)\text{Mu} = 0.87 \times f_y \times \text{Ast} \times \left( d - 0.42 \times x_u \right) Where xux_u is the actual depth of the neutral axis: xu=0.87×fy×Ast0.36×fck×bx_u = \frac{0.87 \times f_y \times \text{Ast}}{0.36 \times fck \times b} xu=0.87×250×1256.640.36×20×450x_u = \frac{0.87 \times 250 \times 1256.64}{0.36 \times 20 \times 450} xu=1058.044/3240x_u = 1058.044 / 3240 xu=97.46mmx_u = 97.46 \, \text{mm}

Now, calculate the ultimate moment: Mu=0.87×250×1256.64×(5600.42×97.46)\text{Mu} = 0.87 \times 250 \times 1256.64 \times (560 - 0.42 \times 97.46) Mu=0.87×250×1256.64×(56040.93)\text{Mu} = 0.87 \times 250 \times 1256.64 \times (560 - 40.93) Mu=273318×519.07\text{Mu} = 273318 \times 519.07 Mu=141.89×106Nmm\text{Mu} = 141.89 \times 10^6 \, \text{Nmm} Mu=141.89kNm\text{Mu} = 141.89 \, \text{kNm}

Final Answer:

  • The beam section is under-reinforced.
  • The ultimate moment of resistance of the beam is 141.89 kNm.

Let me know if you need further clarification or additional calculations!

Post a Comment

0 Comments