RCC Numerical - If xu is limited to 0.39, calculate pt and Mu. Assume M20 – Fe415 concrete and steel.

 If xu is limited to 0.39, calculate pt and Mu. Assume M20 – Fe415 concrete and steel.

Given:

  • Concrete grade: M20 (characteristic compressive strength fckf_{ck} = 20 MPa)
  • Steel grade: Fe415 (yield strength fyf_y = 415 MPa)
  • Maximum depth of the neutral axis xu=0.39dx_u = 0.39d

1. Calculate ptp_t (Area of Steel per Unit Area of Concrete):

For a beam section with a given xux_u, the percentage of steel (ptp_t) can be determined using the following steps:

  1. Determine the Lever Arm (z):

    The lever arm zz is approximately given by:

    zdxu2z \approx d - \frac{x_u}{2}
  2. Calculate the Moment of Resistance (MuM_u):

    The formula for the moment of resistance MuM_u for a singly reinforced beam is:

    Mu=0.87fyAszM_u = 0.87 \cdot f_y \cdot A_s \cdot z

    where AsA_s is the area of steel and fyf_y is the yield strength of the steel.

  3. Relate xux_u to the Steel Ratio:

    The neutral axis depth xux_u is given by:

    xu=Asfy0.36fckbx_u = \frac{A_s \cdot f_y}{0.36 \cdot f_{ck} \cdot b}

    where bb is the breadth of the beam.

Let's Compute ptp_t and MuM_u:

  1. Calculate the Lever Arm (z):

    z=dxu2=d0.39d2=d0.195d=0.805dz = d - \frac{x_u}{2} = d - \frac{0.39d}{2} = d - 0.195d = 0.805d
  2. Moment of Resistance Formula:

    Mu=0.87fyAszM_u = 0.87 \cdot f_y \cdot A_s \cdot z

    Substitute z=0.805dz = 0.805d:

    Mu=0.87fyAs0.805dM_u = 0.87 \cdot f_y \cdot A_s \cdot 0.805d
  3. Determine ptp_t:

    To find AsA_s, you need to use the given maximum depth of the neutral axis:

    xu=0.39dx_u = 0.39d

    Rearranging for AsA_s:

    As=xu0.36fckbfyA_s = \frac{x_u \cdot 0.36 \cdot f_{ck} \cdot b}{f_y}

    Substitute xu=0.39dx_u = 0.39d, fck=20 MPaf_{ck} = 20 \text{ MPa}, fy=415 MPaf_y = 415 \text{ MPa}, and bb (breadth of the beam):

    As=0.39d0.3620b415A_s = \frac{0.39d \cdot 0.36 \cdot 20 \cdot b}{415}

    Simplify to find ptp_t (percentage of steel):

    pt=Asbd100=0.390.3620415100p_t = \frac{A_s}{b \cdot d} \cdot 100 = \frac{0.39 \cdot 0.36 \cdot 20}{415} \cdot 100 pt2.8084151000.676%p_t \approx \frac{2.808}{415} \cdot 100 \approx 0.676\%
  4. Ultimate Moment of Resistance:

    Substitute AsA_s into the MuM_u formula:

    Mu=0.87415(0.390.3620b415)0.805dM_u = 0.87 \cdot 415 \cdot \left(\frac{0.39 \cdot 0.36 \cdot 20 \cdot b}{415}\right) \cdot 0.805d

    Simplify:

    Mu=0.870.390.3620b0.805dM_u = 0.87 \cdot 0.39 \cdot 0.36 \cdot 20 \cdot b \cdot 0.805d Mu0.870.390.36200.805bdM_u \approx 0.87 \cdot 0.39 \cdot 0.36 \cdot 20 \cdot 0.805 \cdot b \cdot d Mu2.53bd kNmM_u \approx 2.53 \cdot b \cdot d \text{ kNm}

Thus, the percentage of steel ptp_t is approximately 0.676%, and the ultimate moment of resistance MuM_u can be computed using Mu=2.53bd kNmM_u = 2.53 \cdot b \cdot d \text{ kNm}, where bb is the breadth of the beam in mm and dd is the effective depth in mm.



Post a Comment

0 Comments