RCC Numerical - Calculate ultimate moment of resistance of R.C. Slab

Calculate ultimate moment of resistance of R.C. Slab 130 mm thick, reinforced with 10 mm φ bars @ 100 mm c/c. Cover to center of bars is 20 mm. M20 concrete and Fe415 steel.

To calculate the ultimate moment of resistance (Mu) of a reinforced concrete slab, follow these steps:

Given Data:

  • Slab Thickness (d): 130 mm
  • Reinforcement Bars: 10 mm diameter @ 100 mm c/c
  • Cover to Center of Bars: 20 mm
  • Concrete Grade: M20 (f_ck = 20 MPa)
  • Steel Grade: Fe415 (f_y = 415 MPa)

Step-by-Step Calculation:

  1. Effective Depth (d): Effective depth (d) is the distance from the top fiber of the slab to the centroid of the tensile reinforcement.

    𝑑=Total ThicknessCoverDiameter of Reinforcement2𝑑=130 mm20 mm10 mm2=130 mm20 mm5 mm=105 mm
  2. Area of Reinforcement (A_s): The area of one bar (A_b) is:

    𝐴𝑏=𝜋(Diameter)24=𝜋(10 mm)24=78.54 mm2

    The number of bars per meter (n):

    Number of Bars per Meter=1000 mm100 mm=10

    Total area of reinforcement (A_s):

    𝐴𝑠=Number of Bars×𝐴𝑏=10×78.54 mm2=785.4 mm2
  3. Moment of Resistance (Mu):

    For a singly reinforced rectangular section, the formula for the ultimate moment of resistance is:

    𝑀𝑢=0.87𝑓𝑦𝐴𝑠(𝑑𝑎2)

    Where 𝑎 is the depth of the neutral axis, which can be approximated as:

    𝑎=𝐴𝑠𝑓𝑦0.36𝑓𝑐𝑘𝑏

    Assuming the width 𝑏 is 1000 mm (for a unit width slab), compute 𝑎:

    𝑎=785.4 mm2415 MPa0.3620 MPa1000 mm=325,5817,20045.4 mm

    Now, calculate 𝑑𝑎2:

    𝑑𝑎2=105 mm45.4 mm2105 mm22.7 mm82.3 mm

    Finally, the ultimate moment of resistance (Mu):

    𝑀𝑢=0.87415 MPa785.4 mm282.3 mm𝑀𝑢0.87415785.482.3=23,541,222 Nmm

    Converting to kNm:

    𝑀𝑢23,541.2 Nm=23.54 kNm

Ultimate Moment of Resistance 𝑀𝑢 is approximately 23.54 kNm.



Post a Comment

0 Comments